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Abstract

The effect of varying gravity and chemical reaction on rotating thermosolutal convection in a
Darcy-Brinkman porous substance is tested. The linear instability theory based on fixed bor-
der conditions when the layer is heated and salted from below has been employed. Three
forms of varying gravitational are discussed: linear function, parabolic function, and exponen-
tial function. The related system has been solved by applying theD2 Chebyshev-Tau technique.
Against the influence of varying gravity, rotation, Brinkman coefficient, chemical reaction, and
salt Rayleigh number, the critical Rayleigh number has been graphically displayed. In addition,
the results indicate that the investigated impacts have a significant impact on locating the con-
vection instability threshold.
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1 Introduction

The phenomenon of thermosolutal convection is crucial to the dynamics of fluids that arise
when two distinct gradients of density (like salinity and temperature) with different diffusion
rates interact [5]. Thermosolutal convection in a porous substance has grown more important in
recent years as a result of its numerous applications in various real-life situations, such as waste
disposal, contaminated groundwater, and so on [8]. The spread of pollutants and contaminants
in soils, shallow water layers, and shallow atmospheres is an area of intense interest in research
that has applications to several geophysical environmental issues of contemporary life [4]. More-
over, in both Newtonian and non-Newtonian fluids, thermosolutal convection is an important
concept that is investigated both practically and theoretically [6]. Furthermore, several authors
have focused their attention on convection with varying gravity, rotation, and chemical reaction
effects; for example, the sufficient and necessary conditions of unconditional stability on rotating
thermosolutal convection in a Darcy-Brinkman porous were studied in [7]. The outcomes were
generalized to those obtained by Straughan [14] for the Darcy system in thermal convection. The
findings were derived for free border conditions using the Lyapunov direct technique and demon-
strated the stabilizing influence of rotation on the onset of convection.

For the Darcy system based on free border conditions, [15] used the Galerkin-weighted resid-
ual scheme to investigate the impact of varied gravity and rotation on thermal convection. The out-
comes revealed that the gravity variation and rotation impacts slowed the onset of convection, and
as the gravity variation and rotation values grew, the convection cells’ measurement was reduced.
In [10], the influence of altered gravitation and chemical reaction on rotating thermosolutal con-
vection for the Darcy equation in a porous substancewith free boundary conditionswas discussed
as the surface layer was salted from either the top or bottom, and heated from the bottom. The
linear function, the parabolic function, and the exponential function of altered gravitationwere ex-
amined. They demonstrated that combining the effects of variable gravitation and rotation as well
as the chemical-reaction influence had a considerable effect on defining the convection instability
threshold. The influence of altered gravitation together with the chemical-reaction and internally
heated source impacts on thermosolutal convection in a porous material for the Darcy-Brinkman
problemwith slip border conditions was tested in [9], as the surface layer had been salted from ei-
ther the top or bottom and heated from the bottom. Three functions of the interior heat source and
varying gravity have been examined. The outcomes demonstrated that combining the influence
of altered gravitation and chemical-reaction with the internally heated source influence and slip
border conditions had a noteworthy influence on measuring the convection instability threshold.

TheChebyshev-collocation procedurewas used in [11] to study themagnetic impact, heat inte-
rior source impact, and chemical reaction impact on thermosolutal convectionwhen the underside
layer has particular heat and salt fluxes. Given the findings, controlling the limits for thermoso-
lutal convection destabilization and stabilization is substantially affected using magnetic, heat in-
terior sources, and chemical reactions. In [13, 1], the Galerkin manner was used to study the
gravitational impacts in the absence and presence of rotation impact, respectively, on the thermal-
convection porous surface of Jeffrey nanofluid for the Darcy-Brinkman system in free borders. It
was revealed that the gravitational coefficient with a negative exponent fluctuation stabilizes both
stationary and oscillatory convections more effectively.

The linear instability threshold for rotating thermosolutal convection involving varying grav-
itation and chemical-reaction influences for the Darcy-Brinkman problem in a porous substance
has been discussed in this work. The goal of this article is to investigate the system’s instabil-
ity analysis with fixed boundary conditions, along with the impacts of rotation, varying gravity,
and chemical-reaction. Three functions of variable gravity have been discussed: the linear func-
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tion, the parabolic function, and the exponential function. The D2 Chebyshev-Tau technique is
applied to analyze linear instability theory. To this end, Section 2 provides the basic equations
and steady-state solutions. Section 3 analyzes linear instability theory. Section 4 discusses the
D2 Chebyshev-Tau approach to solving an eigenvalue system. Section 5 illustrates graphically
the critical Rayleigh number against the impacts of varying downward gravity, chemical reaction,
Brinkman coefficient, and salt Rayleigh number. Section 6 provides the conclusion.

2 Governing Equations

Assume a porous fluid-saturated layer is rotating across a vertical axis z and is bordered by
the horizontal axes,

{
(x, y) ∈ R2 × z ∈ (0, d)

}
. In thermosolutal convection, the Darcy-Brinkman

model is used, which allows gravity g to be fixed by the axis z, as illustrated in Figure 1.

Figure 1: The physical presentation of rotational thermosolutal convection.

0 = − µ

K
v̌i − p̌,i +

[
− ρ0g(z) + ρ0αŤg(z)(Ť− Ť0)− ρ0αČg(z)(Č− Č0)

]
ki

+ λ∆ v̌i − 2
ρ0
ϵ
(Ω̌× v̌i),

0 = v̌i,i,

0 =
1

M
Ť,t − k

Ť
∆Ť+ v̌iŤ,i,

0 = φ̂Č,t − φ̂k
Č
∆Č+ v̌iČ,i − k̂Čeq(Ť) + k̂ Č,

(1)

where v̌i is the velocity, p̌ is the pressure, Ť is the temperature, Čeq is the solute’s equilibrium
concentration at a specific Ť, and Č is the concentration’s salt. µ and λ are viscosities, g is the
gravity, ρ0 is the fluid’s density at the reference temperature Ť0. α

Ť
is the thermal expansion

coefficient, α
Č
is the coefficient of the solute’s expansion, ϵ is the porosity, k

Ť
represents the heat’s

effective diffusivity across the saturatedmaterial, k
Č
is the solute’s molecular diffusivity across the

fluid, k̂ is the reaction coefficient,M denotes the proportion between the fluid’s and the medium’s
heat capacities, and φ̂ is the porosity of thematrix, Ω̌ = Ω̌k indicates the rotation’s angular velocity
field, where k = (0, 0, 1).

In [12], the Čeq is supposed as a linear function of Ť such that Čeq(Ť) = f̌1(Ť− Ť0) + f̌0, where
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Ť0, f̌0, and f̌1 are constants. The conditions for borders are:

0 = v̌i, at z = d, 0,

Ť = ŤL, at z = 0, Ť = ŤU , at z = d,

Č = ČL, at z = 0, Č = ČU at z = d,

(2)

where the system is salted and heated bottom (i.e. ČL > ČU and ŤL > ŤU) and ČU , ČL, ŤU and
ŤL are constants. For a steady state, seek,

¯̄vi = 0,
¯̌̄
T =

¯̌̄
T(z),

¯̌̄
C =

¯̌̄
C(z).

From [12], by assuming Čeq(
¯̌̄
T) =

¯̌̄
C(z), the steady solution is found to (1) which satisfies (2)

as,

¯̄vi = 0,
¯̌̄
T = −β

Ť
z + ŤL,

¯̌̄
C = −β

Č
z + ČL, (3)

where β
Ť
=

(ŤL − ŤU )

d
and β

Č
=

(ČL − ČU )

d
. For analyzing the solution’s stability of (3), find the

perturbations (ǔi, π̌, θ̌, ϕ̌) so that,

v̌i = ǔi + ¯̄vi, p̌ = π̌ + ¯̄p, Ť = θ̌ + ¯̄T, Č = ϕ̌+ ¯̄C.

The governing equations can be derived by incorporating these perturbations into (1),

0 = − µ

K
ǔi − π̌,i + g(z)α

Ť
θ̌ρ0ki − g(z)α

Č
ϕ̌ρ0ki + λ∆ ǔi − 2

ρ0
ϵ
(Ω̌× ǔi),

0 = ǔi,i,

0 =
1

M
θ̌,t − β

Ť
w̌+ ǔiθ̌,i − k

Ť
∆θ̌,

0 = φ̂ϕ̌,t − β
Č
w̌+ ǔiϕ̌,i − φ̂k

Č
∆ϕ̌− k̂f̌1θ̌ + k̂ϕ̌,

(4)

where ǔi = {ǔ, v̌, w̌}. Equation (4) is non-dimensionalized with the transformations, x = dx∗,

t =
d2

Mk
Ť

, ǔ =
k
Ť

d
ǔ∗, π̌ =

k
Ť
µ

K
π̌∗, ˇ̌T =

√
µβ

Ť
k
Ť

α
Ť
ρ0gK

, θ̌ = ˇ̌Tθ̌∗, ˇ̌C =

√
µβ

Č
k
Č
Le

α
Č
ρ0gKφ̂

, ϕ̌ = ˇ̌Cϕ̌∗,

R =

√
β
Ť
d2Kα

Ť
ρ0g

k
Ť
µ

is the temperature number, Rs =

√
β
Č
d2Kα

Č
ρ0gLe

φ̂k
Ť
µ

is the salt Rayleigh

number, and the Lewis number is Le = k
Ť

k
Č

.

By removing stars, the system of non-dimensional perturbations is,

0 = −ǔi − π̌,i +RH1(z)kiθ̌ −RsH1(z)kiϕ̌+ γ̃∆ ǔi − Ťa(K × ǔi),

0 = ǔi,i,

0 = θ̌,t −Rw̌+ ǔiθ̌,i −∆θ̌,

0 = ϵϕ̌,t −Rsw̌+
Le

φ̂
ǔiϕ̌,i −∆ϕ̌+ ηϕ̌− hθ̌,

(5)

whereH1(z) = 1+αh1(z), where g(z) = g(1 +αh1(z)), g constant, h1(z), is the function that esti-

mates the inconsistencies of the gravitational field, andα is the varying gravitation factor. γ̃ =
λK

µd2
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is the Brinkman coefficient, ϵ = MLe, the Taylor number is Ťa =
2ρ0KΩ̌

ϵµ
, and the reaction terms

are h =
k̂f̌1

ˇ̌T

φ̂k
Č

ˇ̌C
and η =

k̂d2

φ̂k
Č

. Equation (5) can be held in
{
{(x, y) ∈ R2} × {z ∈ (0, 1)} × {t > 0}

}
,

where the borders have been represented as,

w̌ = w̌z = 0, θ̌ = 0, ϕ̌ = 0, at z = 0, 1,

in the fixed surfaces case and,

w̌ = w̌zz = 0, θ̌ = 0, ϕ̌ = 0, at z = 0, 1,

in the free surfaces case.

3 The Theory of Linear Instability

At this stage, the definition of a vorticity domain ω̌(x) must be introduced, which provides a
measurement of the fluid’s rotation as follows,

∇× ǔi = ω̌i(x).

Using the 3rd component of curl and curl curl for (5)1 gives,

0 = −ω̌3 + γ̃∆ ω̌3 + Ťaw̌z,

0 = ∆w̌− γ̃∆2 w̌+ Ťaω̌3,z −RH1(z)∆
∗θ̌ +RsH1(z)∆

∗ϕ̌,

0 = θ̌,t −Rw̌+ ǔiθ̌,i −∆θ̌,

0 = ϵϕ̌,t −Rsw̌+
Le

φ̂
ǔiϕ̌,i −∆ϕ̌+ ηϕ̌− hθ̌,

(6)

where ∆∗ =
∂2

∂x2
+

∂2

∂y2
. By dropping the non-linear terms of (6)2 and (6)3, and therefore after

seeking the solutions as the following,

w̌(x, t) = exp(σ̌t)w̌(x), ω̌3(x, t) = exp(σ̌t) ω̌3(x),

ϕ̌(x, t) = exp(σ̌t) ϕ̌(x), θ̌(x, t) = exp(σ̌t) θ̌(x),

where σ̌ represents the growth rate that depends on time. Consequently, the linearization system
resulting from (6) is,

0 = −ω̌3 + γ̃∆ ω̌3 + Ťaw̌z,

0 = ∆w̌− γ̃∆2 w̌+ Ťaω̌3,z −RH1(z)∆
∗θ̌ +RsH1(z)∆

∗ϕ̌,

0 = σ̌θ̌ −Rw̌−∆θ̌,

0 = ϵσ̌ϕ̌−Rsw̌−∆ϕ̌− hθ̌.

(7)

Equation (7) can be analyzed by employing standard-methods, refer to [2]. The expressions for
w̌, ω̌3, θ̌ and ϕ̌ are,

w̌ = f̌(x, y)W̌(z), ω̌3 = f̌(x, y)ϖ(z), θ̌ = f̌(x, y)Θ̌(z), ϕ̌ = f̌(x, y)Φ̌(z),
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where f̌ is a horizontal plan form that fulfills ∆∗f̌ = −ǎ2f̌, Ď =
d

dz
, ǎ is a wave-number and

∆ = Ď2 − ǎ2, (7) can be represented as,

0 = −ϖ + γ̃(Ď2 − ǎ2)ϖ + Ťa ĎW̌,

0 = −γ̃(Ď2 − ǎ2)2 W̌+ (Ď2 − ǎ2)W̌+ Ťa Ďϖ +RH1(z)ǎ
2Θ̌−RsH1(z)ǎ

2Φ̌,

0 = σ̌Θ̌− (Ď2 − ǎ2)Θ̌−RW̌,

0 = ϵσ̌Φ̌− (Ď2 − ǎ2)Φ̌ + ηΦ̌−RsW̌− hΘ̌.

(8)

With the following border conditions,

W̌ = ĎW̌ = ϖ = 0, Θ̌ = 0, Φ̌ = 0, at z = 0, 1, (9)

in the fixed surfaces case and,

W̌ = Ď2W̌ = Ďϖ = 0, Θ̌ = 0, Φ̌ = 0, at z = 0, 1, (10)

in the free surfaces case. Here, the critical Rayleigh number is determined by,

Ra = min
ǎ2

R2(ǎ2),

where ∀ R2 > Ra the instability’s system is fulfilled.

4 Numerical Method

For solving the linear instability (8) according to the boundary condition (9), theD2-Chebyshev-
Tau method [3] has been applied in this section. To begin, reset the interval from 0 < z < 1 to
−1 < z < 1 by putting 2z − 1 = z⋆. In addition, (8)2 can be written as a 2nd-order equation by
setting,

χ̌ = (4Ď2 − ǎ2)W̌.

Then, by removing the star, (8) can be rewritten as the following,

0 = (4Ď2 − ǎ2)W̌− χ̌,

0 = −ϖ + γ̃(4D2 − a2)ϖ + 2Ťa ĎW̌,

0 = χ̌− γ̃(4Ď2 − ǎ2)χ̌+ 2Ťa Ďϖ +RH2ǎ
2Θ̌−RsH2ǎ

2Φ̌,

0 = σ̌Θ̌− (4Ď2 − ǎ2)Θ̌−RW̌,

0 = ϵσ̌Φ̌− (4Ď2 − ǎ2)Φ̌−RsW̌+ ηΦ̌− hΘ̌,

(11)
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where H2 = H1

(
z + 1

2

)
, z ∈ (−1, 1). Chebyshev polynomials have been employed to expand

the functions W̌, χ̌,ϖ, Θ̌, and Φ̌ as follows,

M∑
n=1

T̂n(z) W̌n = W̌(z),

M∑
n=1

T̂n(z) χ̌n = χ̌(z),

M∑
n=1

T̂n(z)ϖn = ϖ(z),

M∑
n=1

T̂n(z)Θ̌n = Θ̌(z),

M∑
n=1

T̂n(z) Φ̌n = Φ(z).

Therefore, (11) can be rewritten as follows,

AX̌ = σ̌BX̌, (12)

where X̌ =
{
W̌1, W̌2, . . . , W̌M , χ̌1, χ̌2, . . . , χ̌M , ϖ1, ϖ2, . . . , ϖM , Θ̌1, Θ̌2, . . . , Θ̌M , Φ̌1, Φ̌2, . . . , Φ̌M

}
and

A =



4Ď2 − ǎ2I −I 0 0 0

2Ťa D 0 γ̃(4Ď2 − ǎ2I)− I 0 0

0 −γ̃(4Ď2 − ǎ2I) + I 2Ťa Ď H2ǎ
2RI −H2ǎ

2RsI

RI 0 0 4Ď2 − ǎ2I 0

RsI 0 0 hI 4Ď2 − ǎ2I − ηI


,

B =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 I 0
0 0 0 0 ϵI

 .
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By applying T̂′
n(±1) = (±1)n−1n2 and T̂n(±1) = (±1)n to fixed border conditions (9), then,

0 =

M∑
n=1

T̂n(1)W̌n(1) = W̌(1), 0 =

M∑
n=1

T̂n(−1)W̌n(−1) = W̌n(−1),

0 =

M∑
n=1

T̂′
n(1)W̌n(1) = ĎW̌(1), 0 =

M∑
n=1

T̂′
n(−1)W̌n(−1) = ĎW̌(−1),

0 =

M∑
n=1

T̂n(1)ϖn(1) = ϖ(1), 0 =

M∑
n=1

T̂n(−1)ϖn(−1) = ϖ(−1),

0 =

M∑
n=1

T̂n(1)Θ̌n(1) = Θ̌(1), 0 =

M∑
n=1

T̂n(−1)Θ̌n(−1) = Θ̌(−1),

0 =

M∑
n=1

T̂n(1)Φ̌n(1) = Φ̌(1), 0 =

M∑
n=1

T̂n(−1)Φ̌n(−1) = Φ̌(−1).

(13)

And for free border conditions (10), then,

0 =

M∑
n=1

T̂n(1)W̌n(1) = W̌(1), 0 =

M∑
n=1

T̂n(−1)W̌n(−1) = W̌(−1),

0 =

M∑
n=1

T̂n(1)χ̌n(1) = χ̌(1), 0 =

M∑
n=1

T̂n(−1)χ̌n(−1) = χ̌(−1),

0 =

M∑
n=1

T̂′
n(1)ϖn(1) = Ďϖ(1), 0 =

M∑
n=1

T̂′
n(−1)ϖn(−1) = Ďϖ(−1),

0 =

M∑
n=1

T̂n(1)Θ̌n(1) = Θ̌(1), 0 =

M∑
n=1

T̂n(−1)Θ̌n(−1) = Θ̌(−1),

0 =

M∑
n=1

T̂n(1)Φ̌n(1) = Φ̌(1), 0 =

M∑
n=1

T̂n(−1)Φ̌n(−1) = Φ̌(−1).

(14)

The generalized eigenvalue system (12) can be solved numerically through the implementation
Matlab program employing the QZ algorithm.

5 The Results Discussion

The impacts of the varying gravity, chemical reaction, Brinkman coefficient, the Taylor number,
and salt Rayleigh number on the critical Rayleigh number threshold are investigated in this section
subject to the fixed border conditions (13). Three various kinds of variable gravity are displayed:

Case A : The linear function, h1(z) = −z.
Case B : The parabolic function, h1(z) = −z2.
Case C : The exponential function, h1(z) = −ez + 1.

To verify the precision of the present outcomes, testing calculations are carried out in thermal
convection and thermosolutal convection that is saturated in a heated porousmedium from below.
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For the thermal convection, it can be formally achieved by omitting (11)4 of the system (11) and
formally putting R2

s = 0. The outcomes are compared to those supplied by [15, 7]. In the absence
of the Brinkman coefficient effect, γ̃ = 0 (i.e. Darcy model has been used) depending on free
boundary conditions (14)1,4,5, where the results in Table 1 recover from those of [15].

Table 1: Contrast of theRa corresponding critical wave numbers ǎc withR2
s = 0, h = η = 0, and γ̃ = 0.

Current study [15]
α Ť 2

a Ra ac Ra ac

Case A

0.6

0 56.1434 3.1520 56.1434 3.1517

100 1710.6869 10.0221 1710.6869 10.0220

200 3226.3467 11.9113 3226.3467 11.9112

300 4714.9936 13.1811 4714.9935 13.1812

0.3
100

1416.2069 9.9703 1416.2069 9.9701

0.6 1710.6869 10.0221 1710.6869 10.0220

1.2 2806.7172 10.6032 2806.7173 10.6031

Case B

0.6

0 47.3887 3.1489 47.3887 3.1488

100 1444.6798 10.0039 1444.6798 10.0037

200 2724.9140 11.8874 2724.9140 11.8874

300 3982.3919 13.1540 3982.3919 13.1534

0.3
100

1315.5033 9.9687 1315.5032 9.9687

0.6 1444.6798 10.0039 1444.6798 10.0037

1.2 1774.8683 10.2135 1774.8683 10.2135

Case C

0.6

0 65.2796 3.1795 65.2801 3.1794

100 1979.7287 10.1846 1979.7424 10.1846

200 3730.6957 12.1219 3730.7212 12.1219

300 5449.7517 13.4243 5449.7887 13.4244

0.3
100

1506.4016 9.9931 1506.4062 9.9930

0.6 1979.7287 10.1846 1979.7424 10.1846

1.2 4014.4896 12.5066 4014.5259 12.5067

Table 2: Contrast of theRa corresponding critical wave numbers ǎc withR2
s = 0, h = η = 0 and α = 0.

Current study [7]
Ra ǎ2c Ra ǎ2c Ra ǎ2c Ra ǎ2c

Ť 2
a γ̃ = 0.01 γ̃ = 0.1 γ̃ = 0.01 γ̃ = 0.1

0 46.9914 8.5407 108.5734 6.1107 46.991 8.541 108.573 6.111

1 63.3058 11.5517 118.0548 6.7967 63.306 11.552 118.055 6.797

10 27.0450 167.3780 11.0086 182.8851 27.050 167.378 11.009 182.885

102 768.9358 94.0092 523.5167 26.8656 768.936 94.011 523.517 26.866

103 3790.5113 282.5180 2069.6065 67.2742 3790.511 282.518 2069.606 67.274

γ̃ = 1 γ̃ = 10 γ̃ = 1 γ̃ = 10

0 701.6886 5.094 6619.5020 4.9507 701.689 5.0944 6619.502 4.951

1 703.5013 5.1140 6619.7000 4.9524 703.501 5.114 6619.700 4.952

10 719.5243 5.2834 6621.4815 4.9536 719.524 5.283 6621.481 4.954

102 858.8875 6.6888 6639.2574 4.9737 858.887 6.689 6639.257 4.973

103 1686.8886 13.3944 6813.2810 5.1672 1686.889 13.394 6813.281 5.167
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Furthermore, for the Darcy-Brinkmanmodel based on free boundary conditions (14), the find-
ings in the absence of the variation gravity effect are compared to those provided by [7], and the
results in Table 2 match those in [7]. In the rotating thermosolutal convection for the Darcy model
where the Brinkman coefficient γ̃ is absented (i.e. γ̃ = 0)with free border conditions (14), the
results are recovered from those given by [10].

The calculated results have been achieved for several values of the Brinkman coefficient γ̃,
the Taylor number Ť 2

a , the gravity variation coefficient α, the reaction coefficients η, h, and the salt
Rayleigh numberR2

s subject to the fixed border conditions (13). Tables 3−5 and Figures 2−4 show
that the Ra grows when Ť 2

a , α, and γ̃ increase. One can note that for γ̃ < 1 the Ra grows more
quickly than for γ̃ ≥ 1 as Ť 2

a increases. For example, in Case A at α = 0.3 , then Ra = 273.0651
with γ̃ = 0.1 and Ť 2

a = 1 andRa = 1051.3092 at Ť 2
a = 100, as shown in Table 3, while at γ̃ = 10 and

Ť 2
a = 1, Ra = 20227.5958 andRa = 20239.7845 at Ť 2

a = 100. Herein, Cases B and C exhibit similar
qualitative behavior in Tables 4 and 5, respectively. It’s important to note that for fixed values of
α, the outcomes exhibit a qualitative behavior similar to that of [7] in the thermal convection case,
as seen in Table 2.

Table 3: Contrast of theRa corresponding critical wave numbers ǎc withR2
s = 9, h = 9 and η = 6 for Case A.

Ra ǎc Ra ǎc Ra ǎc Ra ǎc

α Ť 2
a γ̃ = 0.01 γ̃ = 0.1 γ̃ = 1 γ̃ = 10

0.3

0 78.5963 3.2200 265.01955 3.1820 2090.9327 3.1320 20227.4726 3.1210

1 99.2973 3.2200 273.0651 3.2200 2092.1088 3.1330 20227.5958 3.1210

10 279.07867 3.2200 344.8328 3.2200 2102.6555 3.1430 20228.7040 3.1210

102 2008.0353 3.2200 1051.3092 3.2200 2204.7034 3.2200 20239.7845 3.1220

103 19049.5831 3.2200 7911.14268 3.2200 3205.6589 3.2200 20350.1388 3.1340

0.6

0 94.1109 3.2200 319.7595 3.1810 2532.3698 3.1320 24523.2349 3.1220

1 119.1098 3.2200 329.4924 3.2200 2533.7936 3.1330 24523.3840 3.1220

10 336.3776 3.2200 416.2816 3.2200 2546.5601 3.1440 24524.7259 3.1220

102 2428.0579 3.2200 1270.2460 3.2200 2670.0900 3.2200 24538.1397 3.1230

103 23056.3969 3.2200 9558.2621 3.2200 3881.7734 3.2200 24671.7263 3.1350

0.9

0 117.4587 3.2200 403.0245 3.1840 3205.9468 3.1360 31082.6072 3.1260

1 148.9116 3.2200 415.2842 3.2200 3207.7412 3.1370 31082.7952 3.1270

10 422.4594 3.2200 524.6713 3.2200 3223.8291 3.1480 31084.4861 3.1270

102 3058.6526 3.2200 1598.5123 3.2200 3379.5691 3.2200 31101.3918 3.1280

103 29071.8542 3.2200 11993.5698 3.2200 4908.4020 3.2200 31269.7561 3.1400

1.2

0 155.8873 3.2200 543.3601 3.2010 4348.2087 3.1510 42218.4845 3.1420

1 197.8869 3.2200 559.7299 3.2200 4350.6002 3.1520 42218.7351 3.1420

10 563.2998 3.2200 706.1341 3.2200 4372.0397 3.1630 42220.9899 3.1420

102 4087.3126 3.2200 2132.5813 3.2200 4580.1640 3.2200 42243.5295 3.1430

103 38878.4443 3.2200 15829.1232 3.2200 6628.5768 3.2200 42467.9711 3.1550

604



N. J. Noon Malaysian J. Math. Sci. 19(2): 595–611(2025) 595 - 611

0 100 200 300 400 500 600 700 800 900 1000

0

0.5

1

1.5

2

2.5

3

3.5

4
10

4

0 100 200 300 400 500 600 700 800 900 1000

0

2000

4000

6000

8000

10000

12000

14000

16000

0 100 200 300 400 500 600 700 800 900 1000

1000

2000

3000

4000

5000

6000

7000

0 100 200 300 400 500 600 700 800 900 1000

1.5

2

2.5

3

3.5

4

4.5
10

4

Figure 2: The threshold of linear instability’s critical Rayleigh number for various values of α, γ̃ and Ť 2
a at R2

s = 9, h = 9 and η = 6 for
Case A.
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Figure 3: The threshold of linear instability’s critical Rayleigh number for various values of α, γ̃ and Ť 2
a at R2

s = 9, h = 9 and η = 6 for
Case B.
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Figure 4: The threshold of linear instability’s critical Rayleigh number for various values of α, γ̃ and Ť 2
a at R2

s = 9, h = 9 and η = 6 for
Case C.

When α increases , the Rayleigh number grows faster for γ̃ ≥ 1 than for γ̃ < 1. As an illus-
tration, in Case A at Ť 2

a = 10, then Ra = 259.5350 as γ̃ = 0.01 and α = 0.3 and Ra = 350.6596
with α = 1.2, as seen in Table 3, whereas at γ̃ = 1 and α = 0.3, Ra = 1949.8670 and at α = 1.2
then Ra = 2651.9461 . Also, in Tables 4 and 5, similar behavior are manifested in Cases B and C,
respectively.
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Table 4: Contrast of theRa corresponding critical wave numbers ǎc withR2
s = 9, h = 9 and η = 6 for Case B.

Ra ǎc Ra ǎc Ra ǎc Ra ǎc
α Ť 2

a γ̃ = 0.01 γ̃ = 0.1 γ̃ = 1 γ̃ = 10

0.3

0 73.2525 3.2200 246.1614 3.1830 1938.9994 3.1320 18749.5053 3.1210
1 92.4869 3.2200 253.6231 3.2200 1940.0898 3.1330 18749.6195 3.1210
10 259.5350 3.2200 320.2064 3.2200 1949.8670 3.1440 18750.6468 3.1210
102 1865.8294 3.2200 975.8093 3.2200 2044.4745 3.2200 18760.9187 3.1220
103 17696.1180 3.2200 7345.9584 3.2200 2972.6019 3.2200 18863.2202 3.1340

0.6

0 79.9505 3.2200 269.6504 3.1830 2128.1578 3.1320 20589.6755 3.1210
1 101.0586 3.2200 277.8363 3.2200 2129.3543 3.1330 20589.8008 3.1210
10 284.5247 3.2200 350.8758 3.2200 2140.0821 3.1440 20590.9286 3.1210
102 2050.3589 3.2200 1070.1375 3.2200 2243.8916 3.2200 20602.1998 3.1230
103 19460.1055 3.2200 8063.3946 3.2200 3262.3826 3.2200 20714.4487 3.1340

0.9

0 87.9663 3.2200 297.9634 3.1840 2356.6315 3.1340 22813.2593 3.1230
1 111.3162 3.2200 307.0112 3.2200 2357.9540 3.1350 22813.3978 3.1230
10 314.4388 3.2200 387.7657 3.2200 2369.8121 3.1460 22814.6445 3.1230
102 2271.4045 3.2200 1182.6065 3.2200 2484.5799 3.2200 22827.1038 3.1250
103 21573.8451 3.2200 8910.9439 3.2200 3611.0362 3.2200 22951.1845 3.1360

1.2

0 97.6782 3.2200 332.6396 3.1880 2637.2601 3.1380 25545.9076 3.1270
1 123.7408 3.2200 342.7233 3.2200 2638.7337 3.1390 25546.0619 3.1270
10 350.6596 3.2200 432.7989 3.2200 2651.9461 3.1500 25547.4510 3.1280
102 2539.1254 3.2200 1318.0491 3.2200 2779.8870 3.2200 25561.3343 3.1290
103 24134.4835 3.2200 9917.0321 3.2200 4036.7450 3.2200 25699.5993 3.1400

Table 5: Contrast of theRa corresponding critical wave numbers ǎc withR2
s = 9, h = 9 and η = 6 for Case C.

Ra ǎc Ra ǎc Ra ǎc Ra ǎc
α Ť 2

a γ̃ = 0.01 γ̃ = 0.1 γ̃ = 1 γ̃ = 10

0.3

0 83.2546 3.2200 281.3470 3.1820 2222.4437 3.1320 21506.9880 3.1210
1 105.2611 3.2200 289.8964 3.2200 2223.6937 3.1330 21507.1189 3.1210
10 296.4897 3.2200 366.1563 3.2200 2234.9018 3.1440 21508.2971 3.1210
102 2136.7627 3.2200 1116.9662 3.2200 2343.3526 3.2200 21520.0732 3.1220
103 20280.6228 3.2200 8411.5049 3.2200 3407.1779 3.2200 21637.3490 3.1340

0.6

0 108.6133 3.2200 371.4248 3.1850 2950.3911 3.1370 28594.0765 3.1270
1 137.6644 3.2200 382.7111 3.2200 2952.0419 3.1380 28594.2493 3.1270
10 390.4647 3.2200 483.4559 3.2200 2966.8435 3.1490 28595.8050 3.1270
102 2827.7082 3.2200 1473.1803 3.2200 3110.1412 3.2200 28611.3585 3.1280
103 26878.5341 3.2200 11071.5710 3.2200 4517.1780 3.2200 28766.2556 3.1400

0.9

0 154.9788 3.2200 542.0524 3.2150 4342.1785 3.1630 42166.1892 3.1530
1 196.7974 3.2200 558.2640 3.2200 4344.5344 3.1640 42166.4361 3.1530
10 561.1232 3.2200 703.3473 3.2200 4365.6541 3.1750 42168.6580 3.1540
102 4078.9244 3.2200 2112.3393 3.2200 4571.3697 3.2200 42190.8652 3.1550
103 38820.8696 3.2200 15627.5637 3.2200 6599.4968 3.2200 42411.9966 3.1670

1.2

0 252.0023 3.2200 940.8794 3.2200 7683.8417 3.2200 74882.3660 3.2200
1 319.5864 3.2200 967.0787 3.2200 7687.5557 3.2200 74882.7531 3.2200
10 907.9543 3.2200 1199.3989 3.2200 7720.9700 3.2200 74886.2371 3.2200
102 6584.8650 3.2200 3374.1028 3.2200 8054.0059 3.2200 74921.0761 3.2200
103 62653.5296 3.2200 23631.3078 3.2200 11293.2832 3.2200 75269.3392 3.2200
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In Figure 5, for different values of h, η, and R2
s , anybody can note that when h ≤ η and R2

s

increases, the critical Rayleigh number slowly grows, while when h > η, the critical Rayleigh
number grows more quickly than when h ≤ η. It’s important to note that in all the calculations
performed, it has been found that in Case C, Ra grows faster than in Cases A and B.
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Figure 5: The threshold of linear instability’s critical Rayleigh number for h = η, h > η, h < η and various values of R2
s at α = 0.6,

γ̃ = 1 and Ť 2
a = 10.

Despite the linear critical Rayleigh numbers increasing fast when the Brinkman coefficient
value is large, the results of the effects of the chemical reaction, varying gravity, Taylor number,
and salt Rayleigh number with fixed border conditions could be concluded to have qualitative be-
havior similar to work given by [10] under free border conditions (14) and in the absence of the
Brinkman coefficient effect.

6 Conclusions

The influences of varying gravity, rotation, Brinkman, and chemical reaction coefficients have
been explored in detail on the system’s instability in this study. Thermosolutal-convection in a
porous substance for the Darcy-Brinkman problem is studied when the bottom layer has been
heated and salted. The linear instability theory has been analyzed to determine the influence of
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several factors on the system’s instability. To obtain computational outcomes, the D2 Chebyshev
Tau technique has been applied. Three different functions of varying gravity have been discussed:
the linear function, the parabolic function, and the exponential function. Hence, one can conclude
the following:

1. It has been found that the downward gravitational and rotational effects improved the ar-
rangement’s stability. The scope of the convective cells decreased as the gravity variation
and rotation parameters increased. It has also been discovered that the system is more dis-
turbed when the variable gravity field is in the second case, whereas it is more stable in the
third case.

2. For a certain Brinkman coefficient γ̃, the critical Rayleigh number grows as Ť 2
a increases,

whereas for large Ť 2
a , the critical Rayleigh number decreases with the parameter γ̃ and then

increases for large γ̃. The critical Rayleigh number increases faster for small γ̃ than for large
γ̃ coefficients, as shown in the homogeneous fluid case in reference [7].

3. For the effects of chemical reaction and salt Rayleigh number on the stability of the arrange-
ment, one may argue from the results is to grow the critical Rayleigh number with the in-
creasing of chemical reaction parameters and salt Rayleigh number especially when h is
greater than η.

4. Comparing the current study with the previous study [10], in the current work, the linear
critical Rayleigh numbers are growing rapidly when the value of the Brinkman coefficient is
higher.
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